

K HELIX

K HELIX

Research & Innovation Information Technologies

Athena RC Why us?

- Our scientific focus is on cross-disciplinary, transformative data-intensive research (Big, Open, Linked data)
- growth
- (scientific infrastructures, data catalogues)
- Our collective insights and knowledge shaped the vision, implementation, an governance of HELIX grounding it on real-world challenges and considerations

We champion Data Economy, Big Data and Data Science for national economic

We lead EU/national policies and technical interventions on Open Access/Data

Motivation

Motivation

Converging Policy landscape

- **Data Economy** a strategic priority for EU's sustainable future growth integrating policy, technology, and innovation actions
- Public Sector Information open up and create value from public-sector and publicly-funded Data (open data, INSPIRE, OGP, ...)
- **Industrial Data Platforms** emerging organization & technical instrument to facilitate data sharing and valorization within EU industrial value chains
- **Research** -
 - **Open Access** de jure policy for sharing EU-funded scientific output
 - **Data Management Plans** formalize data handling on project/organization-level
 - **FAIR data** de facto international policy for scientific data

Economic growth, scientific progress, and societal prosperity are about searching, sharing, using, experimenting, building, and valorizing

(*frictionless)

Data

* = simple, fast, inclusive,

Motivation

Archiving-focused Data Platforms

- Flexible, low-cost, open, collaborative • services for simplifying sharing, discovery, use, analysis, and visualization of scientific data
 - Lower the entry barrier, embrace all types • of data
 - Make data useful to most scientists, most of the time

am not a **ibrarian**

Motivation

Challenging the status quo

- Data useful for research are well beyond and above those linked with a publication
- We live in the **Data Economy** and **Big Data** age; everything is becoming data-focused and data-intensive
- Let's change: the explicit assumption is that they serve scientists
 - Most useful data are not linked with publications
 - Make it easier to publish data, why the strict rules?
 - Help me use and experiment with data

ama scientist

Motivation Why is this needed?

- Research Data Platforms
 - •
 - lifecycle
 - and services
 - Ensure sustainability

Key lessons learned from Open Data are highly relevant for

Lower the entry barrier, making it easy, simple, and fast to publish and find data No walled gardens; all data, from any field are welcomed, at any point of their

Make data useful to more people, most of the time (80/20) through visualization

Motivation **Sustainability**

- needs of scientists

 - Public funding may not suffice or be timely available
 - **Devaluation** is (only) a few steps away (stale/missing data, no QA/SLA)
 - Need to introduce additional **revenue streams**, but from where?
- Again, lesson from Open Data
 - new/improved services

• A Research Data Platform must be **diachronic**, ensuring data are always accessible, and evolving, addressing the ever-growing data-intensive

Relatively low CAPEX (setup), higher and fluctuating OPEX (operation, growth)

Industry amongst the first and leading users of Open Data, generating value from

• Sharing and using industrial data in commercial value chains remains a challenge

Motivation **Industrial Data Platforms**

- ensuring fair reimbursement of industrial data
 - cost)
 - IPR protection)
- We can inherently serve these needs, provide a parallel industrial data platform by-design, and tap into the additional revenue streams
 - & open data, data science as a service

Data Platforms for securely sharing, discovering, licensing, using, and

• Concept follows the paradigm of open data (simplicity, fit for purpose, benefits, fast, low

• Same technical **foundations** with key differences (confidentiality, contract management,

USPs: scalable production-grade data processing/analysis services, unified proprietary

Service

HELIX **Hellenic Data Service**

- Scientific Infrastructure for data-intensive research
 - Supports the full lifecycle of scientific data management, processing, sharing, and reuse
 - Inherently scalable, cloud-based
 - Nation-wide, horizontal, cross-domain
 - Low-cost, economies of scale, network effects, maximize ROI
 - Multiple roles: Open Access, FAIR Data, Public Data, Industrial Data Platform

Data first

HELIX The 3 pillars of HELIX

Publications

- Nation-wide, cross-domain discovery of publications
- Adapt and localize **OA OpenAIRE CRIS** services
- Data
 - Data catalogue and repository for FAIR scientific and industrial data
 - Discover, collect, evaluate, download, and use

• Labs

Generic-purpose and domain-specific services and APIs for data analysis, processing, and experimentation

Data alone is not enough

HELIX **Target groups**

- Scientists: data sharing, OA publishing, data experimentation
 - All scientific fields, including **citizen scientists**
- Organizations: institution-wide services augmenting, exposing, or replacing existing publication & data catalogues/repositories
 - Academia, Research, Public Administrations (PSI), special-interest groups
- Scientific Infrastructures: building block; scalable data processing services for very large, heterogeneous scientific data
 - Upcoming: ELIXIR (bio), APOLLONIS (linguistic)
- Industry & innovators: value-added services; ad hoc analysis services
 - Industrial Data Platform: low-cost data processing infrastructures; Data Science as a Service, training data for ML

HELIX Core Concepts 1/2

- **Data-first:** make it simple, easy, and fast to share data (<10 secs); this is what is truly missing; build critical mass (data & users)
- Scientists first: serve the scientists, not librarians or standardization bodies; all too often this is lost, raising the entry barrier and thus failing (see open data)
- Just another tool: ensure inclusiveness and downplay our potential impact on the scientific process be useful and in the background (just another hammer)
- Love ALL data: any data used during research (not only in pubs); we do not know what/how/where data will be useful; no data is too little, no data is too small

HELIX **Core Concepts** 2/2

- back)
- and development of the system itself
- modern scientific practice

• Cross-disciplinary: actively avoid walled-gardens and domain silos; facilitate data-driven crossdisciplinary research (introduce data & problems, facilitate networking); 'scientist' role is fluid

Bundle data with services: software, tools, and knowhow on how to use data is the 2nd greatest bottleneck behind data availability; think equally big (e.g. spark) and small (e.g. fast visualization); **Openness as a principle:** open software, open standards, open services (learn from others, give

Agility: flexibility and reusability across all provided services and sub-systems; also during design

• All Scientists are Data Scientists: data management, processing and analysis skills are integral in

HELIX **Development Roadmap**

• Phase 0 (incubation): 2012-2017

Infrastructures Roadmap

• Phase 1 (MVP): 2018-2019

- Phase 2 (Beta): 2020-2024
 - clients; governance structure; industrial data platform
- Phase 3 (Production): 2025-
 - Sustainable diachronic operation

• Original concept & funding proposal; core technology developed in other R&D projects; National Research

• MVP for technical/policy foundations; core services & lighthouse apps/communities; prepare follow-up

• Scale services and expand reach to more scientific communities; integration in 3rd infrastructures; first industrial

HELIX Architecture

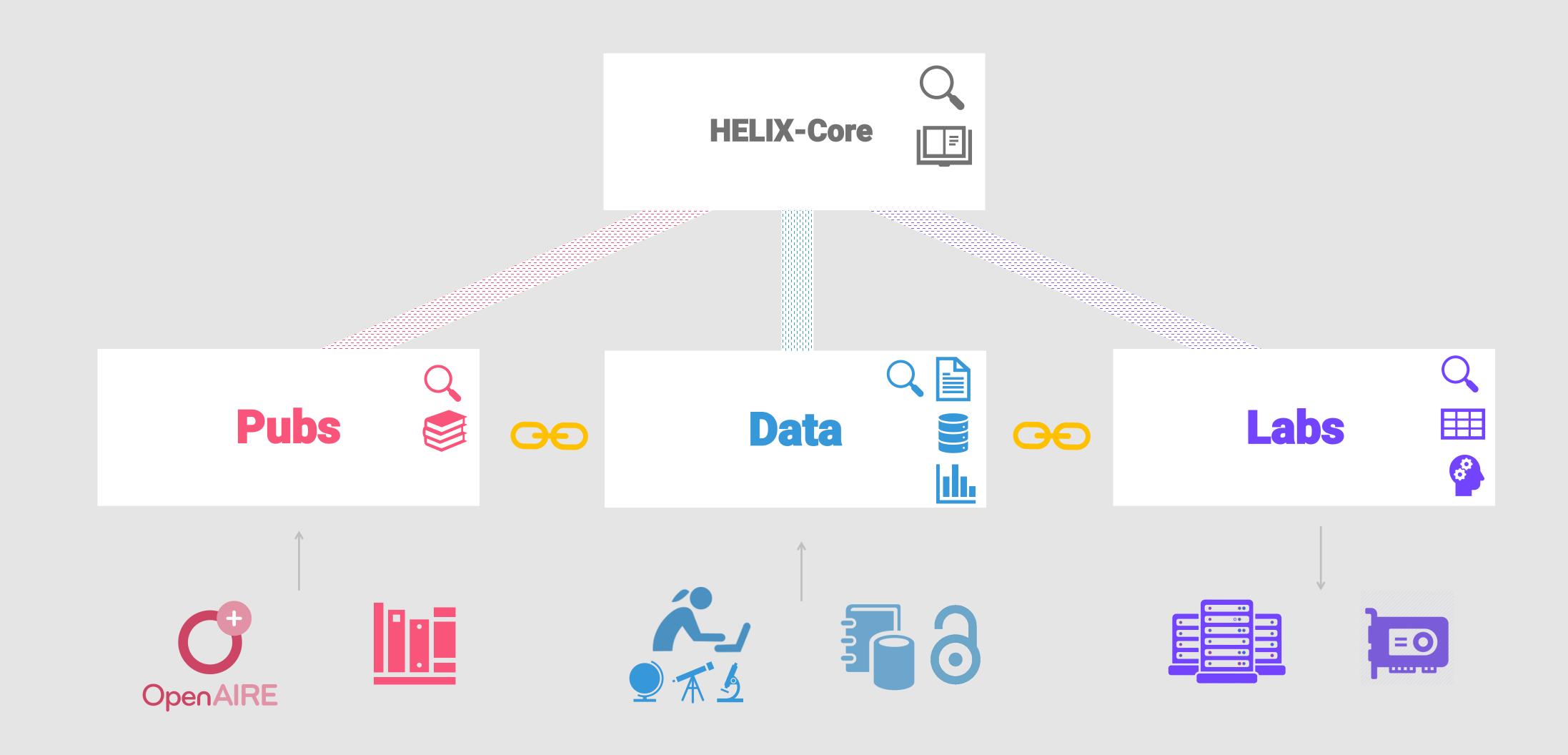
HELIX Architecture Three pillars

hellenicdataservice.gr || helix.gov.gr

pubs.hellenicdataservice.gr

data.hellenicdataservice.gr

Hellenic Data Service


helix

Hellenic Data Service

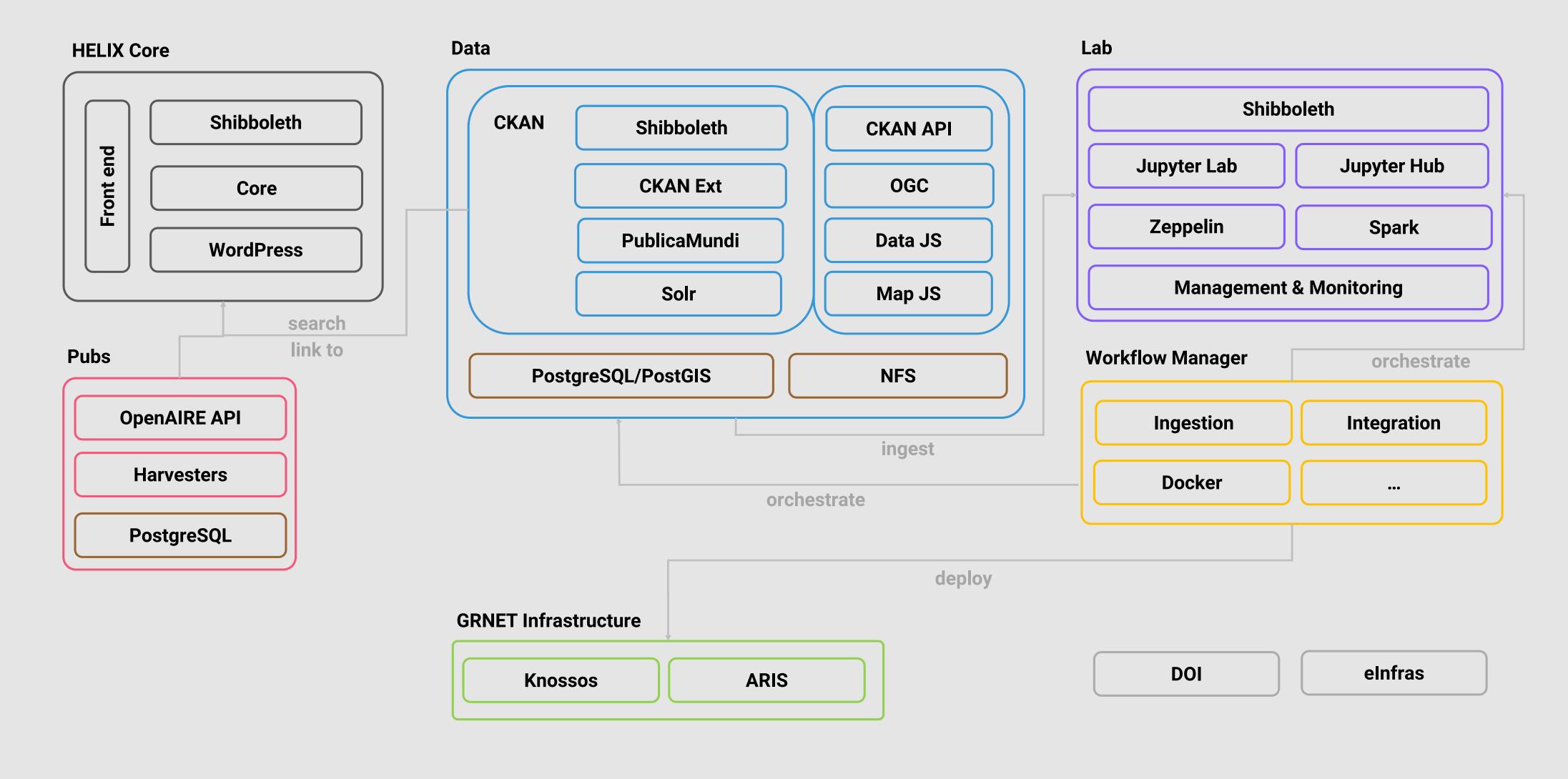
lab.hellenicdataservice.gr

HELIX Architecture Birds-eye view

HELIX Architecture **Core Principles**

- components
 - development tracks
 - Independently scale as/when/where needed, no single-point of failure
 - Workflow orchestration, management & monitoring via in-house Spring Boot system •
- Cloud-based
 - Leverage and valorize GRNET's laaS cloud (Knossos-okeanos) & HPC (Aris) •
 - Docker-based, ported to Kubernetes \bullet
- Open Source/Open Standards

 - scale systems
- Shibboleth-based federated authentication for members of the Greek scientific community
 - •


Not a single monolithic system, but an assembly of loosely coupled, highly-scalable independent

Repurpose/extend software/APIs, flexible prototyping & experimentation, asynchronous parallel

Exclusively open: build on existing great software, give back to the community, help others Majority of software originally developed in the context of EU/national R&D projects, powering world-

Authorization handled individually by each applications by custom roles (SSO not advisable)

HELIX Architecture



HELIX Architecture The data lifecycle

HELIX Architecture **HELIX-Core**

Entry point for discovering all HELIX services, resources, and guides

- Provides the illusion of a single application (common theme)
- Direct entry points also available (e.g., data.helix.gr)
- Loose, API-based integration of search results for all other services (Pubs, Data, Lab)
- Custom Spring app
 - Workflow management (data ingestion, housekeeping)
 - WordPress (content management)
 - Services/code reused in other services for AAI, multilinguality support, monitoring/logging

HELIX Architecture **Publications**

Search for Publications

- Harvested from EU-wide institutional, thematic, or ad-hoc repositories
- Provide publications published from Greek S&T organizations
- OAI-PMH v2.0, OAI-DC
- Value added services (under development/testing)
 - Infer data from publications (link data with pubs)
 - Analytics & KPIs •
- OA Training & support

HELIX 7

HELIX Architecture Data

- CKAN-based Data Catalogue & Repository extended via multiple plugins
 - Core CKAN v2.8 (started from v2.2, soon will port to v3.0)
 - Plugins: CKAN + PublicaMundi (metadata, geo) + HELIX (metadata/workflow)
 - Custom roles/profiles/organization structure

Core CKAN services & HELIX-specific services

• Search, view, visualize, download

• Data management

- Dataset upload (files) open to all publishers (size-limited, admin QA & sanitization)
- Multiple **replication** policies for harvested datasets
- Automated independent and asynchronous data ingestion policies (files to data)

HELIX)AIA

HELIX Architecture /// Data **Data Services**

- Core Metadata and Standard Schemas
 - DataCite-based schema (default, common, simple)
 - Support for domain-specific metadata schemas (e.g., ISO 19131)
 - **Upload/harvest** (e.g., INSPIRE or Public Data catalogues)
 - Extensible programmatic homogenization/mapping (to Core), Ul generation (editor) and on-the-fly transformations (all metadata files available)
- Personal data collections (check later, send to others, use in Lab)
- Datasets linked with Data Services (how/where to use) & Pubs (manual & automated via OpenAIRE)
- User hierarchies/rights (organization, curators, authors)
- Flexible **DMP** support (confidential, embargo)

HELIX Architecture /// Data Data as a Service

- - to their **needs** (e.g., domain-specific schemas and services)
 - DMP facilities
- Sub-domain in HELIX (group)
- White-labelling

Data catalogue & repository provided as a Service to Research Organizations, Scientific Infrastructures, Domain-specific communities, Government/NGOs

• Follow the data and the users (e.g., high-value data, large user groups) and bring the services closer

• Low-cost, low-effort, inclusive **institutional** data catalogues/repos with integrated OA support &

HELIX Architecture Lab

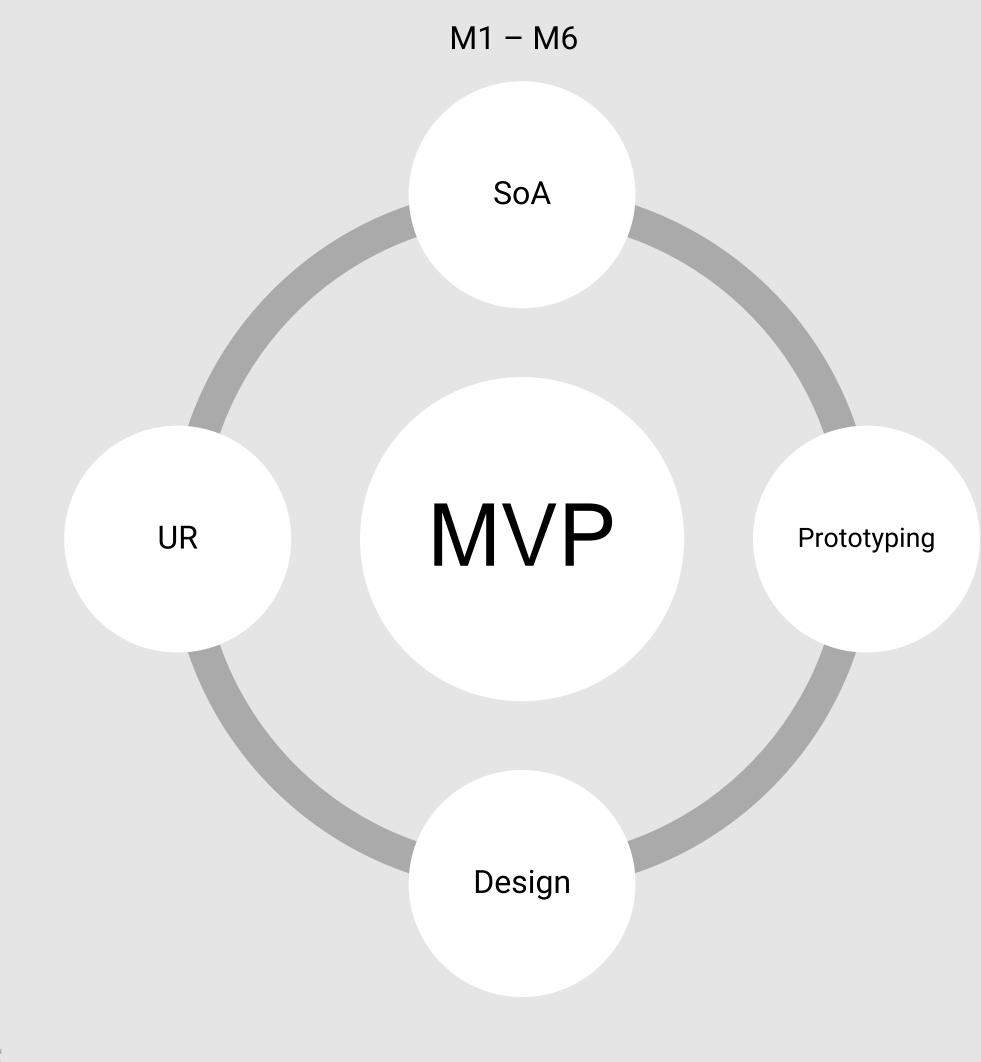
Open-ended collection of independent services and applications for experimenting and using data

- No interdependencies or single point of failure
- Fast and simple to replace/extend services in operation
- Service portfolio constantly expanding, with varying TRL/access levels
- Replicate/expand the industry emerging paradigms (e.g., Azure, Google)
- All have automated & configurable access to the repository's data
 - Data available as files or databases/data processing frameworks •
 - Flexible data availability policies per type/data set (e.g., depending on size, popularity, importance, domain, resource-utilization)

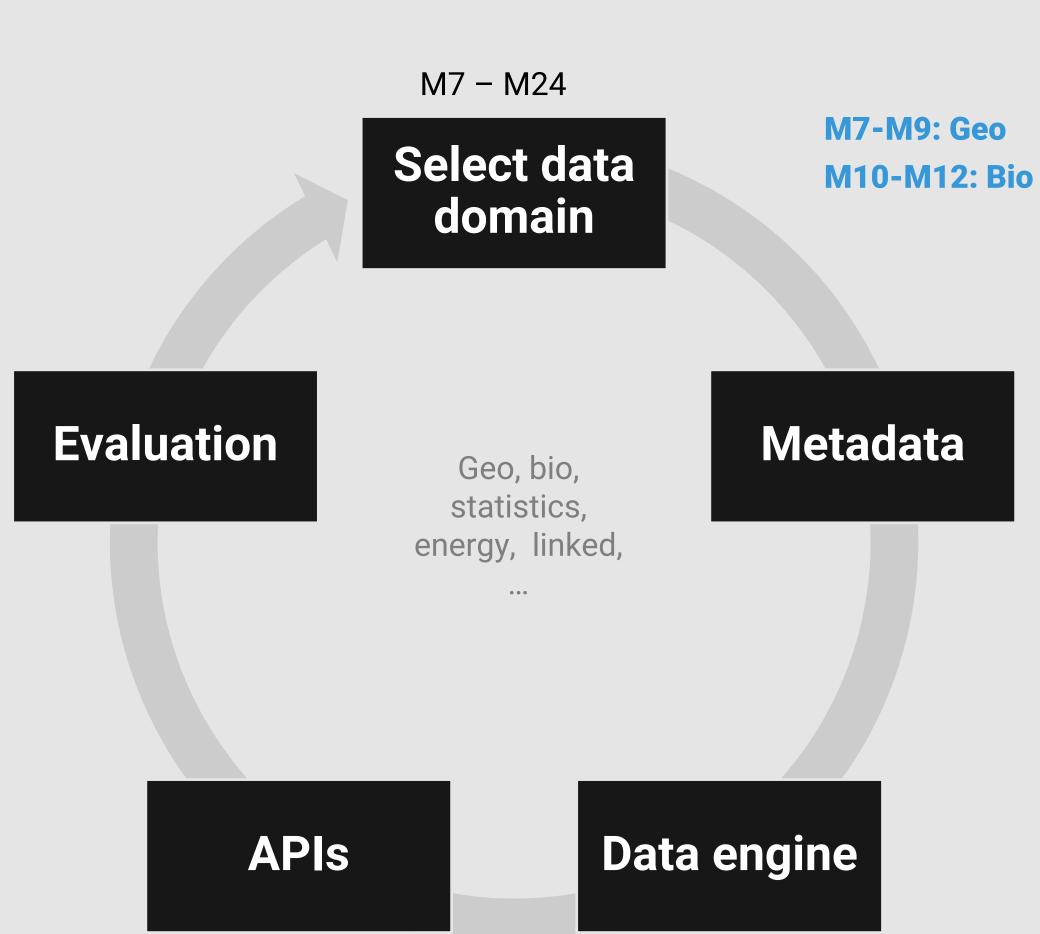
HELIX

HELIX Architecture /// Lab Data Science Notebooks

- Jupyter Lab/Hub (open beta)
 - Tiered kernel/resource access per user type (from R, to HPC)
 - Repository data available in user's notebooks (my data collection; minimize time/effort to discover & use data)
 - Support for under/post-grad courses (share data/exercises) and research teams (collaborative editing)
 - Constantly expanded with additional facilities & services to support Data Science and targeted domain needs
- Apache Zeppelin (invitational beta)
 - Notebook-like facility for Apache Spark clusters (Java/Scala)
 - Dedicated clusters for Big Data experimentation & benchmarking


ters (Java/Scala) ation & benchmarking

HELIX Architecture /// Lab **Other Services**


- Interactive Data Services/widgets (evaluate & use)
 - Presentational (tables, charts, maps) for tabular data
 - File transformations (schemas/formats, CRS)
- End-points & APIs (for third system/apps) •
 - OGC Services for geospatial (Catalogue, WMS, WFS, WPS-experimental) \bullet
 - Linked Open Data (SPARQL, GeoSPARQL end-points)
 - JavaScript Data API (simple filter/SQL-type queries over tabular data)
 - JavaScript Mapping API (custom standalone/embeddable maps)

HELIX Architecture **Data-drive & Agile development**

Find, view, and use open scientific data

helix

Discover and share open scientific publications

helix

Learn, experiment, and build with data

